metry code: (i) $\left.\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$ which links the molecules in quasi-planar chains along the y axis. Thus, N-acetylation simplifies the hydrogen-bond network found in 2-thiohydantoin which creates two-dimensional sheets rather than ribbons (Walker et al., 1969).

Experimental

The title compound was prepared by refluxing 3.32 g of thiohydantoin in 20 ml of acetic anhydride for 30 min . The solid formed was filtered off and washed with ethyl ether. Crystals were obtained by slow evaporation of an acetone solution.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=158.18$
Monoclinic
$P 2_{1} / n$
$a=8.2968(11) \AA$
$b=7.7364(11) \AA$
$c=10.6066(15) \AA$
$\beta=93.434(11)^{\circ}$
$V=679.6(2) \AA^{3}$
$Z=4$
$D_{x}=1.546 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius MACH3 diffractometer ω scans
Absorption correction: none
1458 measured reflections 1384 independent reflections 1026 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.115$
$S=1.038$
1384 reflections
116 parameters
H atoms refined isotropically
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0632 P)^{2}\right.$
$+0.2702 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9.07-18.41^{\circ}$
$\mu=0.411 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$ Colourless

Table 1. Selected geometric parameters (\AA, \circ)

$\mathrm{S}-\mathrm{Cl}$	$1.638(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.469(3)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.218(3)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.362(3)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.208(3)$	$\mathrm{N} 2-\mathrm{Cl}$	$1.81(3)$
$\mathrm{N} 1-\mathrm{Cl}$	$1.370(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.492(3)$
$\mathrm{N}-\mathrm{C} 4$	$1.409(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.486(4)$
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 4$	$131.4(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$102.5(2)$
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{C} 2$	$111.3(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 2$	$125.4(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2$	$117.4(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$128.2(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cl}$	$113.6(2)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$106.4(2)$
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{N} 2$	$106.1(2)$	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{N} 1$	$117.3(2)$
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{S}$	$132.0(2)$	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$	$122.3(2)$
$\mathrm{N} 2-\mathrm{Cl}-\mathrm{S}$	$121.9(2)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$120.3(2)$

Data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1995). Cell refinement: CAD-4 EXPRESS Software. Data reduction: HELENA (Spek, 1996). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1996). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1500). Services for accessing these data are described at the back of the journal.

References

Casas, J. S., Castellano, E. E., Macias, A., Plaýa, N., Sánchez, A., Sordo, J., Varela, J. M. \& Zukerman-Schpector, J. (1995). Inorg. Chim. Acta, 238, 129-137.
Devillanova, F. A., Isaia, F., Verani, G., Battaglia, L. P. \& Corradi, A. B. (1987). J. Chem. Res. (M), pp. 1617-1638.

Enraf-Nonius (1995). CAD-4 EXPRESS Software. Version 5.1. EnrafNonius, Delft, The Netherlands.
MacKay, M. F., Duggan, B. M., Laslett, R. L. \& Wilshire, J. F. K. (1992). Acta Cryst. C48, 334-336.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1996). HELENA. Program for Data Reduction. University of Utrecht, The Netherlands.
Walker, L. A., Folting, K. \& Merrit, L. L. Jr (1969). Acta Cryst. B25, 88-93.
Zsolnai, L. (1996). ZORTEP. Program for the Presentation of Thermal Ellipsoids. University of Heidelberg, Germany.

Acta Cryst. (1998). C54, 428-430

(3S)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl (2S)-2-(1,4-Benzodioxin-6-yl)propionate

M. Teresa Vázquez, ${ }^{a}$ M. Dolors Pujol ${ }^{a}$ and Xavier Solans ${ }^{b}$
${ }^{a}$ Lab. Química Farmacèutica, Universitat de Barcelona, Diagonal s/n, E-08028 Barcelona, Spain, and ${ }^{b}$ Dpto. de Cristal-lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Marti i Franquès s/n, E-08028 Barcelona, Spain. E-mail: xavier@natura.geo.ub.es
(Received 20 June 1997; accepted 26 September 1997)

Abstract

The 2-oxofuran moiety in the title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$, has a skew-envelope form. The heterocycle of the 1,4 -benzodioxin-6-yl moiety has the typical half-chair form and steric hindrance between the substituents produces
the observed loss of planarity of the 2-arylethanoic acid moiety.

Comment

The structure of the title compound, (I), a key intermediate in the synthesis of acidic anti-inflammatory agents, is reported. Among the non-steroidal anti-inflammatory agents, 2-arylpropionic acids constitute an important class. Although most of them are used in a racemic form, those having an S configuration at the propionate chiral centre are the most active (Rieu et al., 1986; Sonawane et al., 1992). The use of enantiomerically pure drugs in therapeutics is becoming of prime importance and as a result, much work has been performed in recent years to develop methods for the preparation of (S)-2-arylpropionic acids.

(I)

The 2-oxofurans usually have envelope forms, each with the C4 atom out of the plane defined by the remaining four atoms (Cobbledick \& Small, 1987), but a 2-oxofuran with the 3 position substituted usually has an envelope form with the C3 atom deviating from the plane. The 2 -oxofuran moiety of the title compound has a C3-envelope form, with a $\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ tor-

Fig. 1. Plot of one of the disordered conformations of the title molecule showing the numbering scheme and 50% probability displacement ellipsoids.
sion angle of $4.8(5)^{\circ}$. This form has also been observed in nepetaefolinol (Blount \& Manchand, 1980), (S)-homoserinelactone hydrochloride (Papaioannou et al., 1990), α-benzyloxy- γ-butyrolactone (Bocelli \& Grenier-Loustalot, 1980), ($4 R, 5 R$)-5-benzoyloxy-1,2-di-aza-7-oxaspiro[4.4]non-1-en-6-one (Jonas et al., 1991) and α-(1-thyminylmethyl)- γ-butyrolactone (Das et al., 1993).

The moiety formed by atoms $\mathrm{C} 2, \mathrm{O} 3, \mathrm{C} 7, \mathrm{O} 4$ and C 8 is nearly planar, with the $\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$ torsion angle equal to $175.7(4)^{\circ}$, which is explained by the steric hindrance between the O 4 atom and the methyl substituents of the 2 -oxofuran ring.

Experimental

The method followed for the asymmetric synthesis of α-arylpropionic acid from the corresponding racemic mixture involves the use of D-pantolactone and other homochiral alcohols (Larsen et al., 1989; Calmes et al., 1994). The separation of the diastereomeric mixture was achieved by flash chromatography and the diastereomeric purity was assessed by HPLC (diastereomeric excess $>99 \%$). The two diastereomers were fully characterized by spectroscopy and elemental analysis.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$
$M_{r}=318.32$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=26.094$ (4) \AA
$b=9.717$ (2) \AA
$c=6.325(2) \AA$
$V=1603.7(7) \AA^{3}$
$Z=4$
$D_{x}=1.318 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
2683 measured reflections
2683 independent reflections
1022 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.159$
$S=0.949$
2664 reflections
220 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0688 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=12-21^{\circ}$
$\mu=0.101 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=29.98^{\circ}$
$h=0 \rightarrow 36$
$k=0 \rightarrow 13$
$l=0 \rightarrow 8$
3 standard reflections frequency: 120 min intensity decay: 1%
$\Delta \rho_{\text {max }}=0.172 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.168 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.020 (4)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 1$	$1.300(5)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.169(5)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.486(5)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.532(5)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.192(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.500(6)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.355(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.503(5)$
$\mathrm{O} 3-\mathrm{C} 2$	$1.405(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.485(6)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	$109.6(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$101.3(3)$
$\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 2$	$118.8(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$100.2(3)$
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O} 1$	$124.3(4)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$104.0(3)$
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$	$126.6(4)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{O} 3$	$121.0(4)$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	$109.1(3)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8$	$124.0(5)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	$118.4(3)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$115.0(4)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{Cl}$	$109.6(3)$		

The C16 atom is disordered over two positions; the occupancy factor for each position was refined, resulting in a value of $0.83(6)$ for C 16 and $0.17(6)$ for $\mathrm{C} 16^{\prime}$. The positions of all H atoms were computed and refined with an overall isotropic displacement parameter, using a riding model. The enantiomer was defined according to the pharmacological activity of the compound.
Data collection: $C A D-4 / P C$ (Kretschmar, 1996). Cell refinement: CAD-4/PC. Data reduction: CFEO (Solans, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Brueggemann \& Schmid, 1990). Software used to prepare material for publication: PLATON (Spek, 1990).

One of us (MTV) is very grateful to Generalitat de Catalunya (CIRIT) for a grant.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1022). Services for accessing these data are described at the back of the journal.

References

Blount, J. F. \& Manchand, P. S. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 264-270.
Bocelli, G. \& Grenier-Loustalot, M. F. (1980). J. Chem. Res. 227, 3101-3106.
Brueggemann, R. \& Schmid, G. (1990). PC Version of ORTEP3.2. University of Ulm, Germany.
Calmes, M., Daunis, J., Jacquier, R. \& Natt, F. (1994). Tetrahedron, 50, 6875-6880.
Cobbledick, R. E. \& Small, R. W. H. (1987). Acta Cryst. C43, 13411343.

Das, A. K., Mazumdar, S. K., Das, N., Talapatra, S. K., Scheiner, P. \& Schwalbe, C. H. W. (1993). Acta Cryst. C49, 177-179.
Jonas, J., Głowiak, T., Zak, Z., Trska, P. \& Mazal, C. (1991). Collect. Czech. Chem. Commun. 56, 973-983.
Kretschmar, M. (1996). CAD-4/PC. Version 2.0. PC Version of CAD-4 Software Version 5.0. University of Tubingen, Germany.
Larsen, R. D., Corley, E. G., Davis, P., Reider, P. J. \& Grabowski, E. J. J. (1989). J. Am. Chem. Soc. 111, 7650-7651.

Papaioannou, D., Barlos, K., Francis, G. W., Brekke, T., Aksnes, D. W. \& Maartmann-Moe, K. (1990). Acta Chem. Scand. 44, 189194.

Rieu, J. P., Boucherle, A., Cousse, H. \& Mouzin, G. (1986). Tetrahedron, 42, 4095-4131.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Solans, X. (1978). CFEO. University of Barcelona. Spain.
Sonawane, H. R., Bellur, N. S., Ahuja, J. R. \& Kulkarni, D. G. (1992). Tetrahedron Asymm. 3, 163-192.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1998). C54, 430-433

Three N-Aryl-Substituted 3-Hydroxy-pyridin-4-ones

John Burgess, ${ }^{a}$ John Fawcett, ${ }^{a}$ David R. Russell ${ }^{a}$ and Lu Zaisheng ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, University of Leicester, Leicester LEI 7RH, England, and ${ }^{b}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221009, Jiangsu, People's
Republic of China. E-mail: jxf@leicester.ac.uk

(Received 21 April 1997; accepted 20 August 1997)

Abstract

The molecular structures of 1-(3,4-dimethylphenyl)-2-ethyl-3-hydroxypyridin-4-one, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$, (1), 2-ethyl-3-hydroxy-1-(4-methylphenyl)pyridin-4-one, $\mathrm{C}_{14} \mathrm{H}_{15}-$ NO_{2}, (2), and 2-ethyl-3-hydroxy-1-(4-methoxyphenyl)-pyridin-4-one, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}$, (3), have been determined. The compounds all exhibit mutually hydrogen-bonded dimeric pairs. In the case of (1), the molecules of the dimer are symmetry related, while in (2) and (3) two independent molecules of the asymmetric unit are linked.

Comment

The structures form dimeric units through mutual O1$\mathrm{H} 1 \cdots \mathrm{O} 2$ hydrogen bonds (Fig. 1). This type of dimeric structure is commonly found for the anhydrous 3-hydroxypyridin-4-ones (Hider et al., 1990; Chan et al., 1992; Xiao et al., 1992; Burgess et al., 1993) and 3-hydroxypyran-4-ones, which are also reported as hydrogen-bonded chains (Burgess et al., 1996; Brown et al., 1995).

(1)

(2)

(3)

